A Novel Parameter Estimation Method Based on LSU-EKF for Polynomial Phase Signal

نویسندگان

  • Yi-xiong Zhang
  • Hua-wei Xu
  • Rong-rong Xu
  • Zhen-miao Deng
  • Cheng-Fu Yang
چکیده

The parameter estimation problem for polynomial phase signals (PPSs) arises in a number of fields, including radar, sonar, biology, etc. In this paper, a fast algorithm of parameter estimation for monocomponent PPS is considered. We propose the so-called LSU-EKF estimator, which combines the least squares unwrapping (LSU) estimator and the extended Kalman filter (EKF). First, the coarse estimates of the parameters of PPS are obtained by the LSU estimator using a small number of samples. Subsequently, these coarse estimates are used to initial the EKF. Monte-Carlo simulations show that the computation complexity of the LSU-EKF estimator is much less than that of the LSU estimator, with little performance loss. Similar to the LSU estimator, the proposed algorithm is able to work over the entire identifiable region. Moreover, in the EKF stage, the accurate estimated results can be output point-by-point, which is useful in real applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Wideband Polynomial Phase Signals in Sensor Arrays Using the Extended Kalman Filter

In the present paper, we consider the problem of parameter estimation of wideband polynomial phase signals (PPS) impinging on a uniform linear array antenna. The parameters of interest are the polynomial phase coefficients and the direction of arrival of the signal. The principle of estimation is based on the introduction of an exact but unfortunately nonlinear state space modelization, of the ...

متن کامل

Extended Kalman Filter for Parameter Estimation of Wideband polynomial Phase Signals in Sensors Arrays

In this paper, we consider the problem of estimating wideband polynomial phase signals in sensor arrays. The estimation is based on the introduction of an exact but nonlinear state space modelization, of the signal, which compels us to use the extended Kalman filter (EKF). Furthermore, a solution to the problem of initialization of the filter is also proposed. Under this solution, the numerical...

متن کامل

Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter

This paper proposes a new computational approach based on the Extended Kalman Filter (EKF) in order to apply the polynomial chaos theory to the problem of parameter estimation, using direct stochastic collocation. The Kalman filter formula is used at each time step in order to update the polynomial chaos of the uncertain states and the uncertain parameters. The main advantage of this method is ...

متن کامل

A Novel Method for Estimation of The Fundamental Parameters of Distorted Single Phase Signals

This paper proposes a new method for parameter estimation of distorted single phase signals, through an improved demodulation-based phase tracking incorporated with a frequency adaptation mechanism. The simulation results demonstrate the superiority of the proposed method compared to the conventional SOGI (Second-Order Generalized Integrator)-based approach, in spite of the dc-offset and harmon...

متن کامل

A Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method

Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017